Academic Open Internet Journal www.acadjournal.com ISSN 1311-4360

Volume 19, 2006

Evaluation of Discrete Cosine Transform based Gradient Vector Flow Active Contours as an efficient tool for boundary mapping of Chromosome spread images

A.Prabhu Britto¹ and Dr. G. Ravindran²

¹Research Scholar, Center for Medical Electronics, Dept. of Electronics and Communication Engineering Anna University, Chennai 600 025 INDIA

> ²Chairman, Faculty of Information and Communication Engineering Anna University, Chennai 600 025 INDIA

Abstract: In this research, characterization of Discrete Cosine Transform (DCT) based Gradient Vector Flow (GVF) Active Contours as an efficient boundary mapping technique for chromosome spread images is done. Statistical testing validates the experimental results of characterization. Investigations on a different dataset are carried out to validate the characterized parameters and the parameters are standardized. Further experiments are carried out to evaluate the validity of the standardization using another dataset. Error Quantification justified the successful standardization. It is hence established that DCT based GVF Active Contour is an efficient tool for boundary mapping of chromosome spread images.

Keywords: Gradient Vector Flow, Active Contours, Chromosome, Boundary Mapping, Characterization, Standardization

I. INTRODUCTION

The classical boundary mapping techniques, namely, region growing, relaxation labeling, edge detection and linking suffer from limitations. Usage of only local information may lead to incorrect assumptions during the boundary integration process leading to errors. Noise and artifacts can possibly cause incorrect segmentation or boundary discontinuities in segmented objects [1]. Therefore, this research work used Discrete Cosine Transform (DCT) based Gradient Vector Flow (GVF) Active Contours to obtain accurate segmentation (boundary mapping) results from a class of chromosome spread images having variability in shape, size and other image properties.

Active Contours or Deformable Curves is a high-level boundary mapping technique. Its main advantage is the ability to generate closed parametric curves from images. The incorporation of a smoothness constraint provides robustness to noise and spurious edges. The focus is on parametric deformable curves, which provide a compact, analytical description of object shape. A class of parametric Active Contours called Gradient Vector Flow (GVF) field Active Contours is chosen for boundary mapping in chromosome spread images[2]. Boundary mapping efficiency of GVF Active Contours on chromosome spread images is improved by embedding the DCT into the boundary mapping scheme[3].

II. ACTIVE CONTOUR MODELS

Active Contours also called as Snakes or Deformable Curves, first proposed by Kass[4] are energy minimizing contours that apply information about the boundaries as part of an optimization procedure. They are generally initialized by automatic or manual process around the object of interest. The contour then deforms itself iteratively from its initial position in conformity with nearest dominant edge feature, by minimizing the energy composed of the Internal and External forces, converging to the boundary of the object of interest. The Internal forces computed from within the Active Contourenforce smoothness of the curve and External forces derived from the image, help to drive the curve toward the desired features of interest during the course of the iterative process.

The energy minimization process can be viewed as a dynamic problem where the active contour model is governed by the laws of elasticity and lagrangian dynamics[5], and the model evolves until equilibrium of all forces is reached, which is equivalent to a minimum of the energy function. The energy function is thus minimized, making the model active.

III. FORMULATION OF ACTIVE CONTOUR MODELS

An Active Contour Model can be represented by a curve c, as a function of its arc length t,

with t = [0...1]. To define a closed curve, c(0) is set to equal c(1). A discrete model can be expressed as an ordered set of n vertices as $v_i = (x_i, y_i)^T$ with $v=(v_1,...,v_n)$. The large number of vertices required to achieve any predetermined accuracy could lead to high computational complexity and numerical instability[5].

Mathematically, an active contour model can be defined in discrete form as a curve x(s) = [x(s), y(s)], se[0,1] that moves through the spatial domain of an image to minimize the energy functional

$$E = \int_{0}^{1} \frac{1}{2} (\boldsymbol{a} | x'(s) |^{2} + \boldsymbol{b} | x''(s) |^{2}) + E_{ext}(x(s)) ds - (2)$$

where a and β are weighting parameters that control the active contour's tension and rigidity respectively[6]. The first order derivative discourages stretching while the second order derivative discourages bending. The weighting parameters of tension and rigid ity govern the effect of the derivatives on the snake.

The external energy function E_{xt} is derived from the image so that it takes on smaller values at the features of interest such as boundaries and guides the active contour towards the boundaries. The external energy is defined by

$$E_{ext} = \mathbf{k} \left| G_{s}(x, y) * I(x, y) \right|_{--(3)}$$

where, $G_k(x,y)$ is a two-dimensional Gaussian function with standard deviation s, I(x,y) represents the image, and ? is the external force weight. This external energy is specified for a line drawing (black on white) and positive ? is used. A motivation for applying some Gaussian filtering to the underlying image is to reduce noise. An active contour that minimizes E must satisfy the Euler Equation

$$ax''(s) - bx'''(s) - \nabla E_{ext} = 0_{--(4)}$$
where $F_{int} = ax''(s) - bx'''(s)_{and} F_{ext} = -\nabla E_{ext}$ comprise the components of a force balance equation such that $F_{int} + F_{ext} = 0_{--(5)}$

The internal force F_{int} discourages stretching and bending while the external potential force F_{ext} drives the active contour towards the desired image boundary. Eq.(4) is solved by making the active contour dynamic by treating x as a function of time t as well as s. Then the partial derivative of x with respect to t is then set equal to the left hand side of Eq.(4) as follows $x_t(s,t) = ax''(s,t) - bx''''(s,t) - \nabla E_{ext} - (6)$

A solution to Eq.(6) can be obtained by discretizing the equation and solving the discrete system iteratively [4]. When the solution x(s,t) stabilizes, the term $x_t(s,t)$ vanishes and a solution of Eq.(4) is achieved.

Traditional active contour models suffer from a few drawbacks. Boundary concavities leave the contour split across the boundary. Capture range is also limited. Methods suggested to overcome these difficulties, namely multiresolution methods[7], pressure forces [8], distance potentials[9], control points[10], domain adaptivity[11], directional attractions[12] and solenoidal fields[13], however solved one problem but introduced new ones [14].

Hence, a new class of external fields called Gradient Vector Flow fields [14,15] was suggested to overcome the difficulties in traditional active contour models.

IV. GRADIENT VECTOR FLOW (GVF) ACTIVE CONTOURS

Gradient Vector Flow (GVF) Active Contours use Gradient Vector Flow fields obtained by solving a vector diffusion equation that diffuses the gradient vectors of a gray-level edge map computed from the image. The GVF active contour model cannot be written as the negative gradient of a potential function. Hence it is directly specified from a dynamic force equation, instead of the standard energy minimization network. The external forces arising out of GVF fields are non-conservative forces as they cannot be written as gradients of scalar potential functions. The usage of non-conservative forces as external forces show improved performance of Gradient Vector Flow field Active Contours compared to traditional energy minimizing active contours [14,15].

The GVF field points towards the object boundary when very near to the boundary, but varies smoothly over homogeneous image regions extending to the image border. Hence the GVF field can capture an active contour from long range from either side of the object boundary and can force it into the object boundary. The GVF active contour model thus has a large capture range and is insensitive to the initialization of the contour. Hence the contour initialization is flexible.

The gradient vectors are normal to the boundary surface but by combining Laplacian and Gradient the result is not the normal vectors to the boundary surface. As a result of this, the GVF field yields vectors that point into boundary concavities so that the active contour is driven through the concavities. Information regarding whether the initial contour should expand or contract need not be given to the GVF active contour model. The GVF is very useful when there are boundary gaps, because it preserves the perceptual edge property of active contours [4,15].

The GVF field is defined as the equilibrium solution to the following vector diffusion equation¹⁴, $u_{i} = g(|\nabla f|)\nabla^{2}u - h(|\nabla f|)(u - \nabla f)_{-(72)}$

$$u(x,0) = \nabla f(x) - (7b)$$

where, \mathbf{u} denotes the partial derivative of $\mathbf{u}(\mathbf{x},t)$ with respect to t, ∇^2 is the Laplacian operator (applied to each spatial component of u separately), and f is an edge map that has a higher value at the desired object boundary. The functions in "g" and "h" control the amount of diffusion in GVF. In Eq.(7), $g(|\nabla f|)\nabla^2 u$ produces a smoothly varying vector field, and hence called as the "smoothing term", while $h(|\nabla f|)(u - \nabla f)$ encourages the vector field u to be close to ∇f computed from the image data and hence called as the data term. The weighting functions $g(\cdot)$ and $h(\cdot)$ apply to the smoothing and data terms respectively and they are chosen¹⁵ as $g(|\nabla f|) = \mathbf{m}$ and $h(|\nabla f|) = |\nabla f|^2$. $g(\cdot)$ is constant here, and smoothing occurs everywhere, while $h(\cdot)$ grows larger near strong edges and dominates at boundaries. Hence, the Gradient Vector Flow field is defined as the vector field u(x,y), v(x,y)] that minimizes the energy functional

$$\boldsymbol{e} = \int \int \boldsymbol{m} (u_x^2 + u_y^2 + v_x^2 + v_y^2) + |\nabla f|^2 |v - \nabla f|^2 dx dy$$
-- (8)

The effect of this variational formulation is that the result is made smooth when there is no data.

When the gradient of the edge map is large, it keeps the external field nearly equal to the gradient, but keeps field to be slowly varying in homogeneous regions where the gradient of the edge map is small, i.e., the gradient of an edge

map ∇f has vectors point toward the edges, which are normal to the edges at the edges, and have magnitudes only

in the immediate vicinity of the edges, and in homogeneous regions ∇f is nearly zero. μ is a regularization parameter that governs the tradeoff between the first and the second term in the integrand in Eq.(8). The solution of Eq.(8) can be done using the Calculus of Variations and further by treating u and v as functions of time, solving them as generalized diffusion equations [15].

V. DISCRETE COSINE TRANSFORM (DCT) BASED GVF ACTIVE CONTOURS

The transform of an Image yields more insight into the properties of the image. The Discrete Cosine Transform has excellent energy compaction. Hence, the Discrete Cosine Transform promises better description of the image properties. The Discrete Cosine Transform is embedded into the GVF Active Contours. When the image property description is significantly low, this helps the contour model to give significantly better performance by utilizing the energy compaction property of the DCT.

The 2D DCT is defined as

 $C(u,v) = \mathbf{a}(u)\mathbf{a}(v)\sum_{x=0}^{N-1}\sum_{y=0}^{N-1} f(x, y) \cos\left[\frac{(2x+1)u\mathbf{p}}{2N}\right] \cos\left[\frac{(2y+1)v\mathbf{p}}{2N}\right] - (11)$

The local contrast of the Image at the given pixel location (k,l) is given by $\frac{2(2n+1)-1}{2}$

$$P(k,l) = \frac{\sum_{t=1}^{r} w_t E_t}{d_{00}} - (12) \text{ where, } E_t = \frac{\sum_{u+v=t}^{r} |d_{u,v}|}{N} - (13) \text{ and } N = \begin{cases} t+1 & t < 2n+1 \\ 2(2n+1)-t & t \geq 2n+1 \end{cases} - (14)$$

Here, w_t denotes the weights used to select the DCT coefficients. The local contrast P(k,l) is then used to generate a DCT contrast enhanced Image[16], which is then subject to selective segmentation by the energy compact gradient vector flow active contour model using Eq.(8).

VI. RESULTS AND DISCUSSION

The chromosome metaphase image (at 72 pixels per inch resolution) provided by Prof.Ken Castleman and Prof.Qiang Wu (Advanced Digital Imaging Research, Texas) was taken and preprocessed. Insignificant and unnecessary regions in the image were removed interactively. Interactive selection of the chromosome of interest was done by selecting a few points around the chromosome that formed the vertices of a polygon. On constructing the perimeter of the polygon, seed points for the initial contour were determined automatically by periodically selecting every third pixel along the perimeter of the polygon.

The GVF deformable curve was then allowed to deform until it converged to the chromosome boundary. The optimum parameters for the deformable curve with respect to the Chromosome images were determined by tabulated studies. The image was made to undergo minimal preprocessing so as to achieve the goal of boundary mapping in chromosome images with very weak edges. The DCT based GVF Active contour is governed by the following parameters, namely, s, μ , a, β and ?.

s determines the Gaussian filtering that is applied to the image to generate the external field. Larger value of s will cause the boundaries to become blurry and distorted, and can also cause a shift in the boundary location. However, large values of s are necessary to increase the capture range of the active contour. μ is a regularization parameter in Eq.(8), and requires a higher value in the presence of noise in the image. a determines the tension of the active contour and β determines the rigidity of the contour. The tension keeps the active contour contracted and the rigidity keeps it smooth. a and β may also take on value zero implying that the influence of the respective tension and rigidity terms in the diffusion equation is low. ? is the external force weight that determines the strength of the external field that is applied. The iterations were set suitably.

GRAPHICAL CHARACTERIZATION RESULTS

DCT based GVF Active Contours were used to boundary chromosome images from chromosome spread images. A few samples are presented here.

Fig.1c Output Image Fig.2c Output Image Fig.3c Output Image Fig.4c Output Image Fig.5c Output Image Fig.6c Output Image

The figures show original chromosome image samples, their corresponding DCT based GVF fields and boundary mapped chromosome images as output images. For example, Fig.1a shows an original chromosome image sample, Fig.1b shows its corresponding Vector Field and Fig.1c shows its boundary mapped output image, and henceforth.

The graphical outputs show successful boundary mapping of chromosome images using DCT based GVF Active Contours.

VALIDATION OF CHARACTERIZATIONEXPERIMENTS

In order to quantify the performance of a segmentation method, validation experiments are necessary. Validation is typically performed using one or two different types of truth models. In this work, ground truth model is not available and hence validation is performed on ordinal or ranking scale and then quantified. A set of 10 random samples is taken and characterization of each parameter is done. The outputs were tabulated in ranking order with "1" describing the best quality output and as the quality decreases the rank increases up to rank "97". Rank "98" is a special case, where the output image is rejected based on quality or the output image is not available due to numerical instability possibly caused due to the greater number of contour points [5]. The tables represent characterization studies for each parameter.

Each table denotes variation for only one parameter either between the lower and upper limits of the parameter or between the lower and upper limits giving significantly different output, with the other parameters taking a constant value. Hence, the best parameter value of that table is the one that gives maximum good quality outputs for all samples or a majority of samples, and exhaustive study on every parameter is done by treating the other parameters as constants.

The statistical median is used to judge the distribution of values for each parameter value for all samples. When the median leans towards the lower values, i.e., towards "1", it indicates that almost 50% of the outputs lean towards "1", making that particular parameter value an optimal one and that optimal value is chosen. The characterization studies reveal that each parameter sometimes has an optimal range within which it can assume any value thereby giving majority good outputs for all samples. But for the sake of experimental purposes, only the investigated discrete value of each parameter that gave best output was chosen. An important point to be noted is that characterization studies have been performed for those parameter values which give either significant output or significant difference in performance between adjacent parameter values. Those parameter values where there is no significant difference between adjacent parameter values have not been tabulated. Also, those parameter values outside the tabulated range which gave no proper results have not been tabulated.

Sample No.					GVF (DCT) s					
	0.05	0.1	0.15	0.2	0.25	0.5	0.6	0.8	1	1.2
1	77	77	77	77	77	29	77	29	13	77
2	77	77	77	29	13	13	13	13	29	77
3	97	77	34	29	77	29	78	81	75	78
4	77	77	29	29	31	70	79	79	79	78
5	97	97	97	97	98	98	98	98	98	98
6	86	86	46	38	38	14	38	38	46	78
7	97	97	97	97	98	98	98	98	98	98
8	86	86	86	54	98	98	98	98	98	98
9	77	77	77	77	38	46	15	77	13	79
10	86	77	13	77	46	65	78	13	78	77
Median	86	77	77	66	62	55	78	78	77	78

Table.1 Characterization of Sigma

In Table 1, the median indicates that the acceptable optimal range of s is 0.2 to 0.5. The best value compared qualitatively amongst those tested is 0.25 and hence it is chosen for performing further characterization.

Table 2.	Characterization of Mu	

Sample No.	GVF (DCT) μ										
	0.05	0.075	0.09375	0.1125	0.15	0.3					
1	23	21	21	23	23	97					
2	21	5	23	23	23	97					
3	30	29	29	46	50	97					
4	23	23	23	40	23	97					
5	98	98	98	97	97	97					
6	48	40	48	48	46	97					
7	98	98	50	50	34	97					
8	98	89	62	97	97	97					
9	71	86	30	71	71	97					
10	23	21	29	71	23	97					
Median	39	35	29	49	40	97					

In Table 2, the median indicates that the acceptable optimal range of μ is 0.05 to 0.09375. The best value compared qualitatively amongst those tested is 0.075 and hence it is chosen for performing further characterization.

Table 3. Cha	aracterization of Alpha
Sample No	GVE (DC'

Sample No.	GVF (DCT) a							
	0	0.125	0.25	0.5	1			
1	7	23	77	71	77			
2	7	30	29	77	30			
3	5	67	78	78	67			
4	23	23	79	80	80			
5	98	98	98	98	97			
6	98	48	40	46	87			
7	98	98	98	97	97			
8	90	86	62	97	94			
9	21	23	23	71	27			
10	5	7	23	21	71			
Median	22	39	70	78	79			

In Table 3, the median indicates that the acceptable optimal range of a extends from 0 to 0.125. The best value compared qualitatively amongst those tested is 0 and hence it is chosen for performing further characterization.

	iai aevei i						
Sample No.	GVF (DCT) ß						
	0	0.5	1				
1	23	30	71				
2	5	21	21				
3	5	21	31				
4	21	23	71				
5	98	98	98				
6	98	46	70				
7	98	98	98				
8	38	94	13				
9	23	71	71				
10	3	21	30				
Median	23	38	71				
X 10 1 1 4 1		11 1 1 1					

 Table 4. Characterization of Beta

In Table 4, the median indicates that the acceptable optimal range of β extends from 0 to 0.5. The best value compared qualitatively amongst those tested is 0 and hence it is chosen for performing further characterization.

Sample No.	GVF (DCT) ?								
	0	0.5	0.625	0.75	0.875	1			
1	97	7	5	5	5	5			
2	97	3	3	3	1	1			
3	97	21	19	21	30	67			
4	97	7	7	7	23	71			
5	97	98	98	98	98	98			
6	97	98	98	98	86	98			
7	97	98	98	98	98	98			
8	97	86	98	97	98	82			
9	97	7	7	23	23	21			
10	97	21	5	19	19	21			
Median	97	21	13	22	26	69			

 Table 5. Characterization of Kappa

In Table 5, the median indicates that the acceptable optimal range of ? extends from 0.5 to 0.875. The best value compared qualitatively amongst those tested is 0.625.

Hence the optimal set of parameter values that give good boundary mapping for the given class of chromosome images is s = 0.25, $\mu = 0.075$, a = 0, $\beta = 0$, and ? = 0.625. A safe limit of 5% tolerance can be introduced to the optimal range of parameter values to make them suitable for use in similar classes of chromosome spread images (indicated in Table 6).

Parameter	Parameter Value used for tested spread image	Acceptable Range of Parameter values	Acceptable Range of Values at 5% tolerance
GVF (DCT) s	0.25	[0.2, 0.5]	[0.1900, 0.5250]
GVF (DCT) µ	0.075	[0.05, 0.09375]	[0.0475, 0.0984]
GVF (DCT) a	0	[0, 0.125]	[0.0000, 0.1313]
GVF (DCT) ß	0	[0, 0.5]	[0.0000, 0.5250]
GVF (DCT) ?	0.625	[0.5, 0.875]	[0.4750, 0.9187]

 Table 6. Optimal range of DCT based GVF Active Contour parameter values for tested chromosome spread images

STATISTICAL VALIDATION OF CHARACTERIZATION EXPERIMENTS

The parameters act independently on the boundary mapping scheme. In each characterization, the effect of other parameters will also be felt as they assume a definite constant value. In the course of the characterization study from Table 1 to Table 5, optimum values for the respective parameters are chosen and applied as constant in the characterization study of the next parameter in the successive table. In the last characterization study shown in Table 5, the values of s, μ , a and β take on the chosen optimal values and only ? is investigated, thereby yielding a one way variation. Hence, one way analysis of variance on Table 5 is sufficient to test the significance of the entire boundary mapping process. A significant outcome from Table 5 will justify that the experimental results of Table 5 are valid, implying that the selected parameter values from Table 1 to Table 4 used as constants in Table 5 are also valid.

Hence, one way Anova test is performed on the last characterization (Table 5) to judge the experimental results. At the customary .05 significance level, one way Anova test yields a p value of 7.17082E-08 on Table 5, which rejects the null hypothesis. The very small p-value of 7.17082E-08 indicates that differences between the column means are highly significant. The probability of this outcome under the null hypothesis is less than 8 in 100,000,000. The test therefore strongly supports the alternate hypothesis that one or more of the samples are drawn from populations with different means. This implies that the results in Table 5 do not arise out of mere fluctuations and that the results are actually significant. Therefore the experimental results are valid. This justifies that a suitable value of parameter ? can be chosen from Table 5, and that the constant values of parameters s, μ , a, and β used in Table 5 are also valid as these values also have significant influence on the results tabulated in Table 5. Therefore, the experimental results and the inferences are also significant.

STANDARDIZATION

Characterization studies have yielded an acceptable optimal range of values for the parameters s,μ,a,β and ?. To establish that the parameter values are standardized with reference to similar classes of chromosome spread images, standardization experiments are carried out in a similar class of chromosome spread images from a different dataset, made available by the kind courtesy of Dr.Michael Difilippantonio, Staff Scientist at the Section of Cancer Genomics, Genetics Branch/CCR/NCI/NIH, Bethesda MD.

The same characterized parameter values of s = 0.25, $\mu = 0.075$, a = 0, $\beta = 0$, and ? = 0.625 have been used. Good boundary mapping results have been obtained and the results are shown in the following pages. Each sample is unique as the chromosomes are imaged in a fluid medium, and random bending effects are manifested. Hence it is shown that the DCT based GVF Active Contour, governed by the characterized values of the parameters of s = 0.25, $\mu = 0.075$, a = 0, $\beta = 0$, and ? = 0.625 are able to overcome the variations in the shape of the chromosomes and give good boundary mapping in each of the samples.

A few samples are illustrated in the following pages. The chromosome image is seen in gray scale, while the DCT based GVF Active Contour mapped boundary is shown in red.

Fig.27 Sample 21

Fig.28 Sample 22

Fig.29 Sample23

From the above illustrations of boundary mapped chromosomes, it is inferred that the set of parameter values s = 0.25, $\mu = 0.075$, a = 0, $\beta = 0$, and ? = 0.625 governing the formulation of the DCT based GVF Active Contours are hence standardized.

EVALUATION OF STANDARDIZATION

To assess the success of the standardization, the DCT based GVF Active Contours with the same characterized values of the parameters were applied to boundary map chromosome spread images from a different dataset, which was made available by the kind courtesy of Prof.Ekaterina Detcheva, at the Artificial Intelligence Department, Institute of Mathematics and Informatics, Sofia, Bulgaria.

A few graphical results are presented subsequently, which indicate that the standardization has been successful. The chromosome is shown in gray scale and the mapped boundary is indicated in red color.

ERROR QUANTIFICATION

Error Quantification is done to assess the experimental results. The error in Boundary Mapping is measured as a difference between axial radius of the original chromosome image sample and the axial radius of the boundary mapped chromosome image sample. The error in boundary mapping for the samples used for characterization is shown in Table 7.

Sample No.	Original Image Major Axis Radius (pixels)	Contour Image Major Axis Radius (pixels)	Major Axis Error (Original - Contour) (pixels)	Major Axis Absolute Error abs(Original - Contour) (pixels)	Original Image Minor Axis Radius (pixels)	Contour Image Minor Axis Radius (pixels)	Minor Axis Error (Original - Contour) (pixels)	Minor Axis Absolute Error abs(Original - Contour) (pixels)
1	19.836534	20.614610	-0.778076	0.778076	7.654679	8.154604	-0.499926	0.499926
2	15.531852	15.888311	-0.356459	0.356459	7.348310	7.831433	-0.483123	0.483123
3	19.450454	20.106271	-0.655817	0.655817	7.748832	8.179759	-0.430927	0.430927
4	35.059325	35.516327	-0.457002	0.457002	8.620817	9.395544	-0.774727	0.774727
5	28.890790	29.151164	-0.260374	0.260374	7.735980	8.187389	-0.451409	0.451409
6	18.082140	18.692496	-0.610356	0.610356	7.470833	7.792613	-0.321780	0.321780
7	26.226850	26.181850	0.045000	0.045000	6.625715	7.047331	-0.421616	0.421616
8	26.033162	26.489206	-0.456044	0.456044	7.697243	8.131959	-0.434716	0.434716
9	20.525006	21.179205	-0.654199	0.654199	8.725828	9.510494	-0.784667	0.784667
10	27.247951	27.158149	0.089802	0.089802	6.839096	7.067086	-0.227990	0.227990
11	15.903326	15.845969	0.057357	0.057357	7.782958	8.142976	-0.360018	0.360018
12	27.435787	27.275522	0.160265	0.160265	8.315512	8.523697	-0.208185	0.208185
Max Absolute Error				0.778076				0.784667
Min Absolute Error				0.045000				0.208185

Table 7. Error in Boundary Mapping for sample images used for characterizat	ion
---	-----

The maximum absolute error from Table7 is **0.784667** pixel and the minimum absolute error is **0.045000** pixel. The contour is one pixel thick. The initial contour converges to the boundary in step sizes of one pixel. Considering the above two facts, it is quite logical that there could be an error approximating one pixel. Since the errors given by Table7 are less than one pixel, the boundary mapping obtained can be accepted as accurate. This justifies that the

parameter values s = 0.25, $\mu = 0.075$, a = 0, $\beta = 0$, and ? = 0.625 that have been used for boundary mapping using DCT based GVF Active Contours can be accepted as characterized values for similar classes of chromosome spread images. The error in boundary mapping for the samples used for standardization is shown in Table 8.

Sample	Original	Contour	Major	Major	Original	Contour	Minor	Minor
No.	Image	Image	Axis	Axis	Image	Image	Axis	Axis
	Axis	Axis	Error (Original	Error	Axis	Axis	Error (Original	Absolute
	Radius	Radius	-	(Original	Radius	Radius	-	(Original
	(pixels)	(pixels)	Contour)	-	(pixels)	(pixels)	Contour)	-
			(pixels)	Contour)			(pixels)	Contour)
1	15.671966	16.664304	-0.992338	(pixels) 0.992338	8.632178	9.408042	-0.775864	(pixels) 0.775864
2	27.532960	28.455320	-0.922360	0.922360	9.363175	10.831798	-1.468623	1.468623
3	21.352938	22.573477	-1.220539	1.220539	9.245948	10.668792	-1.422845	1.422845
4	22.487728	22.988902	-0.501174	0.501174	9.487592	11.011601	-1.524009	1.524009
5	30.832858	31.631947	-0.799089	0.799089	9.916949	11.222596	-1.305647	1.305647
6	26.527726	27.749187	-1.221461	1.221461	10.348389	11.772646	-1.424257	1.424257
7	20.421685	22.022552	-1.600867	1.600867	9.300520	10.527103	-1.226584	1.226584
8	28.932339	30.032657	-1.100319	1.100319	9.705534	11.185087	-1.479554	1.479554
9	17.361945	18.709701	-1.347756	1.347756	8.734208	10.217936	-1.483728	1.483728
10	14.592386	15.831201	-1.238815	1.238815	7.461672	8.903638	-1.441966	1.441966
11	21.530209	22.035274	-0.505066	0.505066	8.816231	10.256872	-1.440641	1.440641
12	18.516333	19.480915	-0.964582	0.964582	7.394475	8.839323	-1.444848	1.444848
13	21.980379	22.722356	-0.741977	0.741977	8.888960	10.173 608	-1.284649	1.284649
14	19.394772	20.504988	-1.110216	1.110216	8.444747	9.892300	-1.447553	1.447553
15	13.283334	14.830840	-1.547507	1.547507	7.783275	8.997038	-1.213763	1.213763
16	15.758397	16.832960	-1.074563	1.074563	8.689258	9.750896	-1.061639	1.061639
17	20.383368	21.569564	-1.186196	1.186196	8.731019	10.135830	-1.404811	1.404811
18	29.016552	29.744011	-0.727460	0.727460	8.824018	10.088889	-1.264871	1.264871
19	20.328609	21.203247	-0.874638	0.874638	8.570169	9.562535	-0.992366	0.992366
20	38.396106	39.384758	-0.988652	0.988652	9.930610	11.533310	-1.602701	1.602701
21	20.593760	21.963540	-1.369780	1.369780	8.777635	10.172417	-1.394782	1.394782
22	28.014880	29.189257	-1.174377	1.174377	9.106209	10.659509	-1.553300	1.553300
23	35.057991	36.212418	-1.154428	1.154428	9.554718	11.220442	-1.665724	1.665724
24	17.289731	18.370185	-1.080455	1.080455	8.024122	9.004566	-0.980445	0.980445
25	22.021634	22.461027	-0.439393	0.439393	8.142623	9.489822	-1.347199	1.347199
26	29.784084	30.682099	-0.898015	0.898015	9.548830	10.755476	-1.206646	1.206646
27	33.294617	34.134478	-0.839861	0.839861	9.542091	11.054903	-1.512812	1.512812
28	24.728291	25.920548	-1.192257	1.192257	9.318735	10.594356	-1.275622	1.275622
29	15.355989	16.272398	-0.916409	0.916409	7.927053	9.153714	-1.226661	1.226661
30	15.797688	16.992960	-1.195272	1.195272	8.164426	9.377414	-1.212988	1.212988
31	19.119752	20.198432	-1.078680	1.078680	8.006951	9.386859	-1.379909	1.379909
32	50.529747	51.836646	-1.306899	1.306899	9.569420	11.155712	-1.586292	1.586292
33	28.677206	29.719430	-1.042224	1.042224	9.347141	10.847365	-1.500224	1.500224
34	18.489779	19.566706	-1.076928	1.076928	9.020151	10.322819	-1.302668	1.302668
35	15.369255	16.562642	-1.193387	1.193387	8.009787	9.352062	-1.342275	1.342275
36	22.002596	22.199599	-0.197003	0.197003	8.269518	9.260998	-0.991480	0.991480
37	22.856044	23.861794	-1.005750	1.005750	8.909892	10.293682	-1.383790	1.383790
38	18.296507	19.566748	-1.270241	1.270241	9.445701	10.707874	-1.262173	1.262173
39	27.960635	29.151157	-1.190522	1.190522	8.545565	10.136476	-1.590911	1.590911
40	18.852903	20.423583	-1.570681	1.570681	8.455191	9.796682	-1.341491	1.341491
41	22.698254	22.763508	-0.065254	0.065254	8.464508	9.752790	-1.288282	1.288282
42	12.293282	13.703855	-1.410574	1.410574	7.320788	8.823351	-1.502564	1.502564

 Table 8. Error in Boundary Mapping for sample images used for standardization

43	11.489264	12.447829	-0.958566	0.958566	7.235781	8.566689	-1.330908	1.330908
44	18.432328	19.577044	-1.144716	1.144716	7.436791	9.010851	-1.574060	1.574060
45	12.968119	14.117667	-1.149548	1.149548	7.803107	8.611738	-0.808631	0.808631
46	14.282209	15.730363	-1.448154	1.448154	7.647730	8.570545	-0.922816	0.922816
47	19.454318	20.187653	-0.733335	0.733335	7.421526	8.633051	-1.211525	1.211525
48	20.625064	21.377546	-0.752482	0.752482	8.360867	9.4691 76	-1.108310	1.108310
49	24,934309	25.765914	-0.831605	0.831605	9.539810	10.676653	-1.136843	1.136843
50	20.374887	21.820383	-1.445496	1.445496	8.790606	9.990901	-1.200295	1.200295
51	19.383527	19.820843	-0.437316	0.437316	8.478031	9.419203	-0.941172	0.941172
52	19.327516	20.508350	-1.180835	1.180835	8.350576	9.233636	-0.883060	0.883060
53	26.433113	27 533623	-1.100511	1.100511	8 610975	9 593304	-0.982329	0.982329
54	12.101642	12.949808	-0.848166	0.848166	7.246340	8.059449	-0.813109	0.813109
55	16.634324	17.486275	-0.851951	0.851951	8.394216	9.252824	-0.858608	0.858608
56	14,749573	16.175581	-1.426008	1.426008	6.833781	8.201446	-1.367665	1.367665
57	26.644550	27.732467	-1.087917	1.087917	9.192708	10.450890	-1.258182	1.258182
58	46.708148	47.716019	-1.007871	1.007871	9.854564	11.425238	-1.570674	1.570674
59	11.804992	12.946824	-1.141832	1.141832	6.838070	8.085564	-1.247494	1.247494
60	14.789925	15.845047	-1.055122	1.055122	8.045290	9.278818	-1.233528	1.233528
61	16.053096	17.098621	-1.045525	1.045525	8.571831	10.044725	-1.472894	1.472894
62	16.381754	17.627738	-1.245984	1.245984	8.109770	9.287800	-1.178031	1.178031
63	24.880002	26.125909	-1.245907	1.245907	8.112620	9.060594	-0.947974	0.947974
64	23.946641	25.039662	-1.093021	1.093021	12.670524	13.276545	-0.606021	0.606021
65	12.162489	13.637709	-1.475220	1.475220	8.477049	9.129125	-0.652076	0.652076
66	29.266172	30.914282	-1.648110	1.648110	10.406857	11.619620	-1.212763	1.212763
67	14.633115	15.986863	-1.353749	1.353749	7.746963	8.767422	-1.020460	1.020460
68	41.377986	42.913452	-1.535466	1.535466	8.388075	9.731649	-1.343574	1.343574
69	30.902650	31.722539	-0.819889	0.819889	7.790671	9.171754	-1.381083	1.381083
70	30.486127	32.010595	-1.524468	1.524468	7.433136	8.958509	-1.525374	1.525374
71	53.003739	54.121765	-1.118025	1.118025	9.009000	10.065934	-1.056934	1.056934
72	23.914936	25.087823	-1.172888	1.172888	8.439396	9.522967	-1.083572	1.083572
73	25.988345	27.436165	-1.447820	1.447820	7.605870	9.074429	-1.468560	1.468560
74	15.201740	16.600042	-1.398303	1.398303	10.073521	10.899285	-0.825764	0.825764
75	27.651519	28.806415	-1.154896	1.154896	9.832643	11.599894	-1.767251	1.767251
76	18.248415	19.923112	-1.674697	1.674697	8.730340	10.555582	-1.825242	1.825242
77	27.280692	28.092240	-0.811548	0.811548	10.746050	12.236822	-1.490772	1.490772
78	31.649805	32.705289	-1.055484	1.055484	12.474942	13.596004	-1.121062	1.121062
79	33.039166	34.504250	-1.465084	1.465084	10.738993	12.331706	-1.592714	1.592714
80	37.867089	38.796924	-0.929835	0.929835	12.673802	14.121217	-1.447415	1.447415
81	35.310917	36.485378	-1.174461	1.174461	10.736892	12.151016	-1.414124	1.414124
82	27.148531	28.467029	-1.318498	1.318498	9.832887	11.683787	-1.850900	1.850900
83	31.084442	32.367469	-1.283027	1.283027	10.187646	12.011337	-1.823691	1.823691
84	30.275702	31.981141	-1.705439	1.705439	10.312149	12.115291	-1.803142	1.803142
85	38.721848	39.850035	-1.128187	1.128187	10.463738	12.253172	-1.789434	1.789434
86	38.172823	39.479579	-1.306756	1.306756	10.713896	12.524580	-1.810684	1.810684
87	22.174872	23.861436	-1.686564	1.686564	9.386474	11.147687	-1.761213	1.761213
88	25.306473	26.855064	-1.548591	1.548591	9.580741	11.419127	-1.838386	1.838386
89	13.389388	15.173893	-1.784505	1.784505	8.709630	10.128332	-1.418702	1.418702
90	27.699672	29.201280	-1.501609	1.501609	10.024375	11.586792	-1.562417	1.562417
91	18.674080	20.424525	-1.750446	1.750446	8.942478	10.632208	-1.689731	1.689731
92	15.202306	16.916676	-1.714370	1.714370	8.345341	9.837005	-1.491664	1.491664
93	18.159180	19.451072	-1.291892	1.291892	7.885159	9.496574	-1.611415	1.611415
94	17.823696	18.939046	-1.115350	1.115350	7.968971	9.407034	-1.438064	1.438064
95	20.392552	21.559613	-1.167061	1.167061	8.803825	9.650425	-0.846600	0.846600
96	16.053326	16.403345	-0.350020	0.350020	8.705797	9.974861	-1.269065	1.269065
97	28.417059	30.076832	-1.659774	1.659774	8.315611	9.761672	-1.446062	1.446062

10 10<	98	26 279791	27 604151	-1 324360	1 324360	8 767107	10 210356	-1 443249	1 443249
19 24.8529 25.05946 -0.639320 0.839320 0.839320 1.30236 -1.30236 -1.30236 1.30236 100 27.05062 28.51946 -1.434055 7.789650 9.20230 -1.44058 1.44028 102 25.701113 26.474260 -0.73156 17.718950 9.20306 9.035695 0.935695 103 21.610747 22.53794 -0.829436 0.829436 7.757083 9.281188 -1.525105 105 22.920461 33.01768 -1.091221 1.091221 1.7018404 1.03339 -1.228484 1.234935 106 25.920061 27.632335 -1.712274 8.251795 9.510343 -1.258568 1.435568 107 24.771901 25.425744 -0.653843 0.653843 9.741176 -1.435568 1.435568 108 16.6708013 1.776232 -0.997013 1.39701 -1.597051 9.573571 1.573557 1.573557 111 20.040026 21.203039 -1.397013 1.39701 1	<u> </u>	24.855220	27.004151	-1.324300	0.820520	0.260120	10.562085	1 202856	1.443247
100 12,00002 28,017440 14,0032 18,0032 18,0032 17,0032 14,00580 14,40580 14,40580 101 12,47205 15,347055 13,37055 77,89560 9,230230 1,440580 1,440580 102 25,70113 26,474269 -0.731356 17,143213 18,07908 -0.935955 0,935955 103 21,610747 22,533912 -0.923166 9,02164 1,032339 1,234935 1,434925 104 21,608508 22,527944 0.829436 0.829436 7,57083 9,221834 1,255105 1,525105 1,525105 1,525105 1,525105 1,525105 1,525105 1,525105 1,525105 1,525105 1,525105 1,535055 1,53605 1,53605 7,07524 1,250144	100	24.833239	23.094738	-0.839320	1.463432	9.200129	10.302983	-1.302830	1.302830
101 12.497.03 1.544.030 1.749033 1.749033 2.302.30 1.440380 1.440380 102 25.701113 26.474269 0.773156 0.773156 0.773156 0.773156 0.773163 0.223166 9.019719 10.454644 1.442925 1.434925 104 21.6098508 22.527944 -0.829436 0.829436 0.757083 9.282188 -1.525105 1.525105 105 29.24044 30.331768 1.001322 1.078404 19.032339 -1.243935 1.243935 106 25.920661 27.632335 -1.712274 1.712274 8.251795 9.510433 -1.258144 1.250144 108 16.970850 18.471045 -1.553695 1.553695 7.064005 7.814866 -1.128014 1.56631 110 20.503965 21.762127 -1.258162 1.957214 -1.596631 1.596631 111 20.46022 2.1762127 -1.578550 1.579550 1.579550 1.579550 112 38.056659 3.9396801	100	12 407205	12 844260	-1.403452	1.403432	7,790(50	0.220220	-1.491231	1.491231
103 22,10113 20,474209 -0.715136 0.715136 <t< td=""><td>101</td><td>12.497203</td><td>15.644200</td><td>-1.347033</td><td>0.772156</td><td>17 142212</td><td>9.230230</td><td>-1.440380</td><td>0.025605</td></t<>	101	12.497203	15.644200	-1.347033	0.772156	17 142212	9.230230	-1.440380	0.025605
104 21.810/94 21.23591/2 -0.521106 9.019/19 10.43404 11.43492 14.3492 104 21.608930 22.527944 0.529436 0.829436 0.829436 0.829436 0.829436 0.829436 0.829436 0.829436 0.829436 1.528105 1.239335 1.239335 1.239335 1.239335 1.239335 1.239335 1.239335 1.239144 107 24.771901 25.425744 0.053343 0.633843 0.637681 9.77878 -1.250144 1.250144 108 16.7907350 18.471045 -1.258162 1.258162 7.975524 9.572144 -1.596631 1.596631 101 20.503965 21.803039 -1.397013 1.397013 8.998619 10.572175 -1.573557 1.573551 1.579550 1.579550 1.579550 1.579550 1.579550 1.579550 1.579550 1.579550 1.579550 1.579550 1.579550 1.579550 1.579550 1.579550 1.579550 1.579550 1.579550 1.579550 1.579550 1.579	102	23.701115	20.474209	-0.773136	0.775150	0.010710	10.078908	-0.933693	0.955095
104 21.698.08 22.52794 -0.829436 0.829436 7.157083 9.282188 1-1.525103 1.525103 105 29.24044 30.331768 1.001322 1.078404 19.03233 -1.243935 1.243935 106 25.92061 27.632335 -1.712274 1.712274 8.251795 9.510343 -1.238548 1.238958 107 24.771901 25.425744 -0.653843 0.653843 8.477681 9.727825 -1.240356 1.124056 109 16.917350 18.471045 -1.553695 1.553695 7.064605 8.188661 -1.124056 1.124056 110 20.040626 21.762127 -1.258162 7.975524 9.57154 -1.596631 1.596631 111 20.40626 2.163029 1.437013 8.9964691 10.572175 -1.573550 1.579550 113 39.580164 40.758866 -1.178870 1.048883 1.2078433 1.5797561 1.579758 114 17.75392 9.24763 -1.465692 1.6447911	103	21.010/4/	22.355912	-0.923100	0.925100	9.019/19	10.434044	-1.434923	1.434923
106 22,24046 30,31768 -1.09132 17,788404 19,02239 -1.243935 1.243935 107 24,771901 25,425744 -0.653843 0.653843 8,477681 9,727825 -1.250144 1.258548 108 16,708013 17,776323 -0.995510 0.995510 6,505608 7,941176 -1.435568 1.3435568 109 16,917350 18,471045 -1.553095 7.064605 8.188661 -1.124056 1.124056 111 20,60026 21.803039 -1.37013 1.397013 8.998619 10.572175 -1.573557 1.573557 112 38,056659 39,96801 -1.340142 1.340142 8.009457 9,616864 -1.607407 1.607407 113 39,580016 40,78886 -1.17870 1.178870 10.498883 12.078433 -1.579550 1.579550 114 17,783921 19,247613 -1.463927 1.4639072 -1.676741 1.544731 115 24,896309 26,735280 -1.838972 9,676941 <td>104</td> <td>21.098508</td> <td>22.527944</td> <td>-0.829430</td> <td>0.829430</td> <td>17 799 404</td> <td>9.282188</td> <td>-1.525105</td> <td>1.525105</td>	104	21.098508	22.527944	-0.829430	0.829430	17 799 404	9.282188	-1.525105	1.525105
106 2.5.9.0061 27.652.35 -1.7.12.74 1.7.122.14 1.7.122.14 1.7.122.14 1.7.122.14 1.7.123.14 1.2.514.4 1.2.58144 1.2.58144 1.2.58144 1.2.5144 1.2.58144 1.2.5144 1.2.124056 1.1.24056 110 20.503965 21.7.62127 -1.2.58162 1.2.58162 7.975524 9.572154 -1.596631 1.597631 111 20.406026 21.803039 -1.397013 8.998619 10.572175 -1.573557 1.573557 112 38.056659 39.396801 -1.340142 1.340142 8.009457 9.616864 -1.607407 1.677407 113 39.580016 40.758886 -1.178870 1.178870 10.49883 12.078433 -1.579550 1.579550 114 17.77322 24.034059 -1.548520 9.673694 10.831072 -1.157378 1.157378 116 24.85639 24.034059 -1.548520 9.022670 10.667461 -1.644791 1.644791 117 15.498630 1.749241 1.079	105	29.240440	30.331708	-1.091322	1.091322	17.788404	19.052559	-1.243935	1.243935
107 24.717801 25.42.3144 -0.035843 0.053843 0.477812 -1.250144 1.250144 108 16.730813 17.776323 -0.995510 6.50508 7.941176 -1.435566 1.435568 109 16.917350 18.471045 -1.553695 1.553695 7.064605 8.188661 -1.124056 1.124056 111 20.040026 21.803039 -1.397013 1.397013 8.998619 10.5712175 -1.573557 112 38.056659 39.396001 -1.30142 1.340142 8.009457 9.616864 -1.607407 1.607407 113 39.580016 40.758886 -1.178870 1.178870 10.498883 12.078433 -1.575550 1.575550 114 17.783921 1.9247613 -1.463692 7.437665 9.29169 -1.854034 1.854034 115 24.896309 24.034059 -1.548520 9.022670 10.667461 -1.644791 1.644791 117 15.49860 1.578002 -1.079141 8.0791433 1.94050	100	25.920061	27.032333	-1./122/4	1./122/4	8.251795	9.510545	-1.258548	1.258548
108 16.78815 17.76525 -0.995310 0.995310 0.530508 7.941176 -1.435368 1.435368 109 16.917350 18.471045 -1.553695 7.064605 8.188661 -1.1204056 1.124056 111 20.400206 21.803039 -1.37013 1.397013 8.998619 10.572175 -1.573557 112 38.056659 39.396801 -1.340142 1.340142 8.009457 9.616864 -1.607407 1.607407 113 39.580016 40.758886 -1.178870 1.178870 10.498883 12.078433 -1.579550 1.579550 114 17.783921 19.247613 -1.463692 1.463692 7.437665 9.291699 -1.854034 1.854034 116 22.485533 20.34030 -1.54820 1.548520 9.022670 10.667461 -1.6444791 1.644791 117 15.498861 16.578002 -1.079141 1.079141 8.073217 9.981869 -1.278652 1.278652 117 24.187462 25.0002171	107	24.771901	25.425744	-0.055845	0.055845	8.477081	9.727825	-1.250144	1.250144
109 103 104 1.12403 1.124036 1.124036 1.124036 110 20.503965 21.762127 1.258162 7.975524 9.572115 1.573557 1.573557 111 20.406026 21.803039 -1.397013 1.397013 8.998619 10.572175 -1.573557 1.573557 112 38.056659 39.396801 -1.14870 1.178870 10.49883 12.078433 -1.579550 1.579550 114 17.783221 1.9247613 -1.463092 7.437665 9.291699 -1.854034 1.854034 115 24.896309 26.735280 -1.838972 1.838972 9.673694 10.831072 -1.157378 1.157378 116 22.485539 24.034059 -1.64310 1.044313 9.140502 10.512071 -1.371569 1.371569 117 15.498861 16.578002 -1.079141 1.079141 8.037118 9.824751 -1.786433 1.787633 118 16.454983 1.454571 1.465677 1.465677	108	16./80813	17.776323	-0.995510	0.995510	6.505608	7.941176	-1.435568	1.435568
110 20.30935 21.76.127 -1.258102 1.258102 7.373.24 9.372134 -1.396631 1.396631 111 20.406025 21.803039 -1.37013 8.998619 10.572175 -1.573557 1.573557 112 38.056659 39.396801 -1.178870 11.049883 12.078433 -1.579550 114 17.783921 19.247613 -1.463692 1.463692 7.437665 9.291699 -1.840341 1.854034 115 24.896300 26.735280 -1.838972 9.673694 10.831072 -1.157378 1.157378 116 22.485539 24.034059 -1.548520 1.548520 9.022670 10.667461 -1.644791 1.644791 117 15.498861 16.578002 -1.079141 1.079141 8.037118 9.824751 -1.737633 1.787633 119 24.187462 25.000171 -0.812709 0.623745 1.1364589 -1.470844 1.740844 120 21.57824 22.983501 -1.455677 1.465677 8.7032	109	10.917550	18.4/1043	-1.555095	1.333093	7.004003	0.572154	-1.124030	1.124030
111 20.400/26 21.80/359 -1.37/013 1.597013 2.598019 10.57213 -1.57337 1.57353 112 38.056659 39.396801 40.758886 -1.178870 1.140142 8.009457 9.616864 -1.607407 1.007407 113 39.580016 40.758886 -1.178870 1.178870 10.498883 12.078433 -1.57550 1.579550 114 17.783921 19.247613 -1.463692 7.437665 9.221699 -1.854034 1.854034 116 22.485539 24.034059 -1.548520 1.548520 9.022670 10.667461 -1.644791 1.464791 117 15.498861 16.578002 -1.079141 1.079141 8.037118 9.824751 -1.478633 1.787633 117 15.498861 16.257151 -1.465677 1.465677 8.703217 9.981869 -1.470844 1.740844 120 21.51784 22.983501 -1.465677 1.46522 9.046995 -1.628363 1.628363 121 15.08894	110	20.503965	21./0212/	-1.258162	1.258102	7.975524 8.009610	9.572154	-1.590031	1.590051
112 38.00605 39.398001 -1.380142 1.30142 5.004937 9.016843 -1.007407 1.607407 113 39.580016 40.758886 -1.178870 11.0498833 12.078433 -1.579550 1.579550 114 17.783921 19.247613 -1.463692 1.438972 9.673694 10.831072 -1.157378 1.157378 115 24.896309 26.735280 -1.838972 1.838972 9.673694 10.831072 -1.157378 1.157378 116 22.485539 24.034059 -1.079141 1.079141 8.037118 9.824751 -1.787633 1.7371569 118 16.454983 17.499246 25.000171 -0.812709 9.623745 11.364589 -1.740844 1.740844 120 21.517824 22.983501 -1.465677 1.465677 8.703217 9.981869 -1.278652 1.278652 121 15.098594 16.257715 -1.158921 1.94849 7.418632 9.046995 -1.652363 1.634363 122 14.1291	111	20.400020	21.805059	-1.397013	1.397013	8.998019	10.5/21/5	-1.5/355/	1.5/355/
113 39.36010 40.738860 1.17870 10.478807 10.478863 12.07833 1.37933 1.37933 114 17.783921 19.247613 1.463692 7.437665 9.291699 1.854034 1.854034 115 24.896309 26.735280 -1.838972 1.838972 9.673694 10.831072 -1.157378 1.157378 116 22.485539 24.034059 -1.548520 1.902670 10.667461 -1.644791 1.644791 117 15.498861 16.578002 -1.079141 1.079141 8.037118 9.824751 -1.787633 1.787633 119 24.187462 25.000171 -0.812709 9.623745 11.364891 -1.478641 1.740844 120 21.517824 22.983501 -1.465677 1.465677 8.703217 9.981869 -1.278652 1.278652 121 15.098594 16.257515 -1.58921 1.358921 10.38377 1.534960 1.353496 122 14.129186 15.727674 -1.598489 1.6587140	112	38.030039 20.590016	39.390801	-1.340142	1.340142	8.009457	9.010804	-1.00/40/	1.00/40/
114 17.89/21 19.247613 -1.463692 1.436692 7.437665 9.21699 -1.834034 1.838072 115 24.896309 26.735280 -1.838972 1.838072 9.673694 10.831072 -1.157378 1.157378 116 22.485539 24.034059 -1.548520 9.022670 10.667461 -1.644791 1.644791 117 15.498861 16.578002 -1.079141 1.079141 8.037118 9.824751 -1.78633 1.737633 118 16.454983 17.499296 -1.044313 1.044313 9.140502 10.512071 -1.371569 1.371569 120 21.517824 22.98301 -1.465677 1.465677 8.703217 9.981869 -1.278652 1.278652 121 15.098594 16.257515 -1.158921 1.45891 9.038787 10.489106 -1.450313 1.454363 122 14.129186 15.727674 -1.598489 7.418632 9.046995 -1.628363 1.6287514 125 18.892043 20.28514 <td>115</td> <td>39.380010</td> <td>40.738880</td> <td>-1.1/88/0</td> <td>1.1/00/0</td> <td>10.498883</td> <td>12.078433</td> <td>-1.379330</td> <td>1.579550</td>	115	39.380010	40.738880	-1.1/88/0	1.1/00/0	10.498883	12.078433	-1.379330	1.579550
113 24.83039 20.33260 -1.338712 1.338712 -1.31378 1.13778 116 2248539 24.034059 -1.54820 1.54820 1.644791 1.644791 117 15.498861 16.578002 -1.079141 1.079141 8.037118 9.824751 -1.787633 1.787633 118 16454983 17.499296 -1.044313 1.044313 9.140502 10.512071 -1.371569 1.371569 119 24.187462 25.000171 -0.812709 0.812709 9.623745 11.364589 -1.740844 1.740844 120 21.517824 22.983501 -1.465677 1.456677 8.703217 9.94869 -1.278652 1.278652 121 15.098544 16.2575751 -1.589489 7.418632 9.046995 -1.628363 1.628363 122 14.129186 15.727674 -1.598489 1.348272 1.404522 8.382052 10.033772 -1.534960 1.534960 124 18.182667 19.924183 1.363875 1.363875	114	17.783921	19.24/613	-1.403092	1.463692	7.437665	9.291699	-1.854034	1.854034
116 22.48353 24.03405 -1.348520 9.022070 10.0807401 -1.044791 1.044791 117 15.498861 16.578002 -1.079141 1.079141 8.037118 9.824751 -1.787633 1.787633 118 16.454983 17.499296 -1.044313 1.044313 9.140502 10.512071 -1.371569 1.371569 119 24.187462 25.000171 -0.812709 0.812709 9.623745 11.364589 -1.740844 1.740844 120 21.517824 22.983501 -1.465677 1.465677 8.703217 9.981869 -1.278652 1.278652 121 15.098594 16.527515 -1.159821 1.598489 7.418632 9.046995 -1.628363 1.628363 123 20.764002 2.21.97016 -1.432994 8.768812 10.033772 -1.534960 1.534950 124 18.188267 19.592789 -1.404522 1.404522 8.382052 10.039192 -1.657140 1.657140 125 18.939243 20.285	115	24.690309	20.733260	-1.636972	1.636972	9.073094	10.651072	-1.13/3/8	1.13/3/0
117 15.37802 -1.079141 1.079141 8.037118 9.324731 -1.787033 1.787033 118 16.454983 17.499296 -1.044313 1.044313 9.140502 10.512071 -1.371569 1.371569 119 24.187462 25.00171 -0.812709 0.812709 9.623745 11.364589 -1.740844 1.740844 120 21.517824 22.983501 -1.465677 1.465677 8.703217 9.981869 -1.278652 1.278652 121 15.098594 16.257515 -1.158921 1.158921 9.038787 10.489106 -1.450319 1.450319 122 14.129186 15.727674 -1.598489 1.598489 7.418632 9.046995 -1.628363 1.628363 124 18.188267 19.592789 -1.404522 1.404522 8.382052 10.039192 -1.657140 1.657140 125 18.93943 20.285314 -1.325077 1.295777 9.234557 10.794933 -1.560376 1.560376 126 19.844294 </td <td>110</td> <td>15 409961</td> <td>24.034059</td> <td>-1.548520</td> <td>1.548520</td> <td>9.022070</td> <td>10.00/401</td> <td>-1.044/91</td> <td>1.044/91</td>	110	15 409961	24.034059	-1.548520	1.548520	9.022070	10.00/401	-1.044/91	1.044/91
118 10.434983 11.499296 -1.044313 1.044313 9.140302 10.512071 -1.51169 1.571509 119 24.187462 25.000171 -0.812709 0.812709 9.623745 11.364589 -1.740844 1.740844 120 21.517824 22.983501 -1.465677 1.465677 8.70217 9.981869 -1.278652 1.278652 121 15.098594 16.257515 -1.158921 1.158921 9.038787 10.489106 -1.450319 1.450319 122 14.129186 15.727674 -1.598489 1.432994 8.768812 10.303772 -1.534960 1.534960 124 18.188267 19.592789 -1.404522 1.404522 8.382052 10.039192 -1.657140 1.657140 125 18.939243 20.285314 -1.346072 7.481623 9.264128 -1.782505 1.754525 126 19.844294 21.208168 -1.363875 1.323198 9.84893 -1.654055 1.654055 127 26.238065 27.533841	11/	15.498801	10.578002	-1.0/9141	1.0/9141	8.03/118	9.824751	-1./8/033	1.78/055
119 24.167402 25.000171 -0.312709 0.312709 9.0.32743 11.305309 -1.740344 17.40344 120 21.517824 22.983501 -1.465677 1.465677 8.703217 9.981869 -1.278652 1.278652 121 15.098594 16.257515 -1.158921 9.038787 10.489106 -1.450319 1.450319 122 14.129186 15.727674 -1.598489 1.598489 7.418632 9.046995 -1.628363 1.628363 123 20.764022 22.197016 -1.432994 1.432994 8.768812 10.303772 -1.534960 1.534960 124 18.188267 19.592789 -1.404522 1.404522 8.382052 10.039192 -1.657140 1.657140 125 18.939243 20.285314 -1.366072 7.481623 9.264128 -1.782505 1.782505 126 19.844294 21.208168 -1.363875 1.363875 8.230198 9.884893 -1.654695 1.654695 127 26.238065 27.533	110	10.434965	17.499290	-1.044313	0.812700	9.140302	11.264580	-1.5/1509	1.5/1509
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	119	24.167402	23.000171	-0.812709	0.812709	9.023743	0.091960	-1./40844	1.740644
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	120	21.517824	22.985501	-1.4050//	1.405077	8.703217	9.981809	-1.2/8052	1.2/8052
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121	14.120196	15.207(74	-1.138921	1.130921	9.030707	0.0469100	-1.430319	1.430319
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	122	14.129180	15./2/0/4	-1.598489	1.598489	7.418032	9.040995	-1.628363	1.028303
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	123	20.704022	22.19/010	-1.432994	1.432994	8.708812	10.303772	-1.554900	1.554900
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	124	18.020242	19.392789	-1.404322	1.404322	0.302032	0.264128	-1.037140	1.03/140
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	125	10.939243	20.265514	-1.540072	1.340072	7.461025 9.220109	9.204128	-1./82303	1.782303
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	120	19.844294	21.208108	-1.303875	1.303875	8.230198 0.234557	9.884895	-1.054095	1.054095
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	127	50.861022	52 615055	1 754022	1.254022	0 000520	10.292220	1 402702	1.000370
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	120	16 226610	16 855520	-1.734922	0.518020	0.009320	10.382229	-1.492702	1.492702
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	129	13/2907/	14 955483	-1.526409	1 526409	9.077288 8.009254	0 337600	-1.328446	1.025510
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	130	13.429074	15 300156	-0.98/185	0.98/185	6.8/9160	7 729817	-0.880658	0.880658
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	131	17.011167	40 160514	1 258347	1 258347	0.726675	11 35/186	1.627511	1.627511
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	132	38 805225	40 123353	-1 318128	1.250547	11 598487	12 881671	-1.283184	1.027511
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	134	13 348832	14 576388	-1 227557	1 227557	7 683565	9 474765	-1 791200	1 791200
136 20.330862 21.838440 -1.507578 1.507578 8.690759 10.385698 -1.694940 1.694940 137 15.077049 16.698517 -1.621468 1.621468 8.835773 10.639860 -1.804087 1.804087 138 26.989340 28.234650 -1.245310 1.245310 9.409284 11.118903 -1.709619 1.709619 139 17.889180 19.312198 -1.423018 1.423018 8.118620 9.788408 -1.669788 1.669788 140 28.259209 30.067447 -1.808238 1.808238 9.498699 10.987069 -1.488371 1.488371 141 24.427379 25.823162 -1.395784 1.395784 9.695588 11.295594 -1.600006 1.600006 142 23.627306 25.091738 -1.464432 1.464432 8.095011 9.962331 -1.867320 1.867320 143 23.810684 25.061957 -1.221273 9.419878 10.759572 -1.339695 1.339695 144 12.113	135	38,432549	39.831625	-1.399076	1.399076	11.024138	12.658246	-1.634108	1.634108
137 15.077049 16.698517 -1.621468 1.621468 8.835773 10.639860 -1.804087 1.804087 138 26.989340 28.234650 -1.245310 1.245310 9.409284 11.118903 -1.709619 1.709619 139 17.889180 19.312198 -1.423018 1.423018 8.118620 9.788408 -1.669788 1.669788 140 28.259209 30.067447 -1.808238 1.808238 9.498699 10.987069 -1.488371 1.488371 141 24.427379 25.823162 -1.395784 1.395784 9.695588 11.295594 -1.600006 1.600006 142 23.627306 25.091738 -1.464432 1.464432 8.095011 9.962331 -1.867320 1.867320 143 23.810684 25.061957 -1.251273 1.221273 9.419878 10.759572 -1.339695 1.339695 144 12.113925 13.343194 -1.229269 1.229269 8.018322 9.513394 -1.495073 1.495073 14	136	20.330862	21.838440	-1.507578	1.507578	8.690759	10.385698	-1.694940	1 694940
138 26.989340 28.234650 -1.245310 1.245310 9.409284 11.118903 -1.709619 1.709619 139 17.889180 19.312198 -1.423018 1.423018 8.118620 9.788408 -1.669788 1.669788 140 28.259209 30.067447 -1.808238 1.808238 9.498699 10.987069 -1.488371 1.488371 141 24.427379 25.823162 -1.395784 1.395784 9.695588 11.295594 -1.600006 1.600006 142 23.627306 25.091738 -1.464432 1.464432 8.095011 9.962331 -1.867320 1.867320 143 23.810684 25.061957 -1.251273 1.251273 9.419878 10.759572 -1.339695 1.339695 144 12.113925 13.343194 -1.229269 1.229269 8.018322 9.513394 -1.495073 1.495073 145 16.915286 18.386556 -1.471270 1.871270 7.838470 9.005787 -1.167317 1.167317	137	15.077049	16.698517	-1.621468	1.621468	8.835773	10.639860	-1.804087	1.804087
139 17.889180 19.312198 -1.423018 1.423018 8.118620 9.788408 -1.669788 1.669788 140 28.259209 30.067447 -1.808238 1.808238 9.498699 10.987069 -1.488371 1.488371 141 24.427379 25.823162 -1.395784 1.395784 9.695588 11.295594 -1.600006 1.600006 142 23.627306 25.091738 -1.464432 1.464432 8.095011 9.962331 -1.867320 1.867320 143 23.810684 25.061957 -1.251273 1.251273 9.419878 10.759572 -1.339695 1.339695 144 12.113925 13.343194 -1.229269 1.229269 8.018322 9.513394 -1.495073 1.495073 145 16.915286 18.386556 -1.471270 1.871270 7.838470 9.005787 -1.167317 1.167317	138	26,989340	28,234650	-1.245310	1.245310	9 409284	11.118903	-1.709619	1.709619
140 28.259209 30.067447 -1.808238 1.808238 9.498699 10.987069 -1.488371 1.488371 141 24.427379 25.823162 -1.395784 1.395784 9.695588 11.295594 -1.600006 1.600006 142 23.627306 25.091738 -1.464432 1.464432 8.095011 9.962331 -1.867320 1.867320 143 23.810684 25.061957 -1.251273 1.251273 9.419878 10.759572 -1.339695 1.339695 144 12.113925 13.343194 -1.229269 1.229269 8.018322 9.513394 -1.495073 1.495073 145 16.915286 18.386556 -1.471270 1.471270 7.838470 9.005787 -1.167317 1.167317	139	17.889180	19.312198	-1.423018	1.423018	8.118620	9.788408	-1.669788	1.669788
141 24.427379 25.823162 -1.395784 1.395784 9.695588 11.295594 -1.600006 1.600006 142 23.627306 25.091738 -1.464432 1.464432 8.095011 9.962331 -1.867320 1.867320 143 23.810684 25.061957 -1.251273 1.251273 9.419878 10.759572 -1.339695 1.339695 144 12.113925 13.343194 -1.229269 1.229269 8.018322 9.513394 -1.495073 1.495073 145 16.915286 18.386556 -1.471270 1.471270 7.838470 9.005787 -1.167317 1.167317	140	28.259209	30.067447	-1.808238	1.808238	9,498699	10.987069	-1.488371	1.488371
142 23.627306 25.091738 -1.464432 1.464432 8.095011 9.962331 -1.867320 1.867320 143 23.810684 25.061957 -1.251273 1.251273 9.419878 10.759572 -1.339695 1.339695 144 12.113925 13.343194 -1.229269 1.229269 8.018322 9.513394 -1.495073 1.495073 145 16.915286 18.386556 -1.471270 1.471270 7.838470 9.005787 -1.167317 1.167317	141	24.427379	25.823162	-1.395784	1.395784	9.695588	11.295594	-1.600006	1.600006
143 23.810684 25.061957 -1.251273 1.251273 9.419878 10.759572 -1.339695 1.339695 144 12.113925 13.343194 -1.229269 1.229269 8.018322 9.513394 -1.495073 1.495073 145 16.915286 18.386556 -1.471270 1.471270 7.838470 9.005787 -1.167317 1.167317	142	23.627306	25.091738	-1.464432	1.464432	8.095011	9.962331	-1.867320	1.867320
144 12.113925 13.343194 -1.229269 1.229269 8.018322 9.513394 -1.495073 1.495073 145 16.915286 18.386556 -1.471270 1.471270 7.838470 9.005787 -1.167317 1.167317	143	23.810684	25.061957	-1.251273	1.251273	9.419878	10.759572	-1.339695	1.339695
145 16.915286 18.386556 -1.471270 1.471270 7.838470 9.005787 -1.167317 1.167317	144	12.113925	13.343194	-1.229269	1.229269	8.018322	9.513394	-1.495073	1.495073
	145	16.915286	18.386556	-1.471270	1.471270	7.838470	9.005787	-1.167317	1.167317
146 35.318252 36.090017 -0.771764 0.771764 9.118425 10.590449 -1.472024 1.472024	146	35.318252	36.090017	-0.771764	0.771764	9.118425	10.590449	-1.472024	1.472024
147 19.708705 21.229899 -1.521195 1.521195 9.374193 10.853156 -1.478963 1.478963	147	19.708705	21.229899	-1.521195	1.521195	9.374193	10.853156	-1.478963	1.478963
148 23.910337 25.694098 -1.783761 1.783761 9.459880 11.234284 -1.774405 1.774405	148	23.910337	25.694098	-1.783761	1.783761	9.459880	11.234284	-1.774405	1.774405
149 48.113620 49.349568 -1.235948 1.235948 10.490992 12.338561 -1.847570 1.847570	149	48.113620	49.349568	-1.235948	1.235948	10.490992	12.338561	-1.847570	1.847570
150 49.917137 51.202320 -1.285183 1.285183 9.082107 10.856781 -1.774674 1.774674	150	49.917137	51.202320	-1.285183	1.285183	9.082107	10.856781	-1.774674	1.774674
151 32.556208 34.235269 -1.679062 1.679062 9.462194 11.297245 -1.835052 1.835052	151	32.556208	34.235269	-1.679062	1.679062	9.462194	11.297245	-1.835052	1.835052
152 33.207234 34.848162 -1.640928 1.640928 8.691695 10.397784 -1.706090 1.706090	152	33.207234	34.848162	-1.640928	1.640928	8.691695	10.397784	-1.706090	1.706090

153	16.979062	18.520299	-1.541237	1.541237	6.946655	8.726264	-1.779609	1.779609
154	24.605822	25.482857	-0.877035	0.877035	8.113264	9.825922	-1.712658	1.712658
155	26.403204	27.969927	-1.566723	1.566723	9.176485	10.785247	-1.608762	1.608762
156	24.013608	25 615960	-1 602352	1 602352	9 101337	10 687972	-1 586636	1 586636
157	22.040457	23 670391	-1 629934	1.629934	8,236205	9.917901	-1.681697	1.681697
158	22.318277	23.708479	-1.390202	1.390202	8.551382	10.080071	-1.528689	1.528689
150	33,735806	35.040720	-1 304914	1 304914	13 508514	14 897244	-1 388730	1 388730
160	17 999605	19 458788	-1 459184	1.504914	8 339721	10.106280	-1 766559	1.566559
161	18 113859	19.327966	-1 214108	1 214108	8 989681	10.367453	-1 377772	1.700555
162	19 849320	21 163800	-1 314480	1 314480	9 221759	10.885869	-1 664110	1.664110
162	25 485283	27.115/37	1.630155	1.630155	0.800878	11 182578	1.372700	1.372700
164	19.018617	20 384091	-1.365475	1.050155	8 855341	10.276901	-1.372700	1.372700
165	21 826682	23.528871	-1 702189	1.702189	8 208094	9 807279	-1 599185	1 500185
165	21.020002	35 592/30	-1./02109	1./02107	8.999310	10.646353	-1.577185	1.577105
167	24.058980	25 714750	-1.415514	1.415514	9 221398	10.775454	-1.554056	1.55/056
168	24.030500	25.681728	-1.055188	1.055188	9.439789	11.080068	-1.640279	1.554050
160	24.020340	25.001720	1 610580	1.610580	10 108267	11.501470	1 222202	1.040277
109	23.158896	23.340910	-1.010389	1.010389	10.198207	12 350592	-1.323203	1.525205
170	25.150070	24.034173	1.620067	1.475277	0.648455	11.410448	1 761003	1.400003
171	20.493227	20.114194	-1.020907	1.020907	9.046455	12 154405	-1.701993	1.701993
172	30.710373	40 137057	1 224074	1.224074	12 707580	14 205206	-1.303933	1.00350
173	20.061051	21 550700	-1.224074	1.224074	10.003156	14.295200	1 756052	1.497017
174	12 854562	15 286045	1 522282	1.520290	7 206050	0.041860	1 744020	1.750552
175	13.634303	25 115406	-1.332382	1.332362	7.290930 8 768824	9.041809	-1.744920	1.744920
170	20.425820	21.755126	1 220207	1.220207	0.226915	10.001991	1 565067	1.755067
177	20.425629	20.442511	-1.329297	1.329297	9.330813	10.901001	-1.303007	1.303007
170	10.064600	20.821021	-1.380308	1.360306	0.247087	12.034770	-1.383839	1.5656502
179	36.065833	20.831931	-1.707232	1.707232	9.247087	11.606727	-1.030302	1.030302
100	15.062412	16 602462	1.540050	1.023227	9.908080	10.067042	1 656297	1.720041
182	20 179458	21 908645	-1.340030	1.340030	9.510057	10.907043	-1.030387	1.030387
182	16 231500	17 /350/3	1.725107	1.727107	0.008868	10.771027	1.132505	1.152505
183	10.231309	20.017165	0.000306	0.000306	9.008808	10.020497	1 787821	1.510029
185	25 782715	20.017103	-0.999300	1 301/27	9.124001	10.912022	-1.767821	1.767821
186	13.096746	14 716790	-1.620044	1.501427	7 377308	8 988964	-1.611656	1.710200
187	18 001107	20 512836	1.611720	1.611720	9.045009	10 747767	1.702758	1.011050
187	26.622150	20.512850	-0.942169	0.942169	10 108389	11.481676	-1.702758	1.702738
189	27.987962	29,566069	-1 578107	1 578107	10.215272	11.776568	-1 561296	1.561296
10)	30 533699	31 797310	-1.263612	1.263612	10.213272	12 138193	-1.301290	1.301290
190	16 565674	17 855143	-1 289469	1 289469	10.681040	12.150195	-1 483246	1.43746
192	15.178607	16.736527	-1.557920	1.557920	8.807469	10.605921	-1.798453	1.798453
192	21 685394	22 890356	-1 204962	1 204962	10 337343	11 604640	-1 267298	1.750155
193	19.167518	20.627483	-1.459965	1.459965	8,483991	10.266008	-1.782017	1.782017
195	34.836081	36 320664	-1 484583	1 484583	9 205800	10.976978	-1 771178	1 771178
196	16.695816	17.754742	-1.058926	1.058926	8.648719	10.009237	-1.360518	1.360518
197	19 529966	21.077051	-1 547085	1.547085	8 358981	10.112622	-1 753642	1.556510
198	27.355468	28.840489	-1.485021	1.485021	9.524901	11.259418	-1.734517	1.734517
199	20 233104	21 839734	-1 606630	1 606630	10 251424	11 689260	-1 437836	1 437836
200	23.975095	25.379406	-1.404311	1.404311	10.315971	11.819465	-1.503494	1.503494
201	31 430940	33,140342	-1.709402	1.709402	11.641736	13 443535	-1.801799	1.801799
202	17.028699	18 655821	-1.627122	1.627122	10,198261	11.846032	-1.647771	1.647771
203	25.219246	26.803637	-1.584391	1.584391	11.668128	13,193830	-1.525702	1.525702
203	23,708575	25.230878	-1.522303	1.522303	11.819731	13.367722	-1.547991	1.547991
205	30 280394	31 863098	-1 582705	1 582705	11 973341	13 718625	-1 745284	1 745284
205	29 584088	31.015642	-1 431554	1.302703	11.738661	13 559841	-1 821180	1.821180
207	13,561812	15.052638	-1.490827	1.490827	9.074158	10.651505	-1.577347	1.577347
_~.	10.001012	10.0020000	1	1	2.07 1120	10.001000	1.0 , 10 11	1.0 , , 0 , ,

Minimum Absolute Error				0.065254				0.606021
Maximum Absolute Error				1.900074				1.867320
218	22.580157	24.480231	-1.900074	1.900074	10.661173	12.341603	-1.680430	1.680430
217	18.425904	20.178760	-1.752856	1.752856	10.257129	11.906491	-1.649362	1.649362
216	18.778422	20.465092	-1.686671	1.686671	11.151816	12.424835	-1.273019	1.273019
215	31.470275	32.957390	-1.487115	1.487115	11.981835	13.617268	-1.635433	1.635433
214	28.736201	30.094898	-1.358698	1.358698	11.341097	12.790097	-1.449000	1.449000
213	17.124521	18.877162	-1.752641	1.752641	11.396605	12.910010	-1.513405	1.513405
212	23.439791	25.105427	-1.665636	1.665636	10.898287	12.468612	-1.570325	1.570325
211	23.772969	25.227189	-1.454220	1.454220	11.008461	12.518129	-1.509668	1.509668
210	29.972360	31.653878	-1.681518	1.681518	11.720213	13.179788	-1.459575	1.459575
209	17.912933	19.741272	-1.828339	1.828339	10.451326	11.800258	-1.348932	1.348932
208	23.363817	25.039424	-1.675608	1.675608	10.927165	12.728671	-1.801507	1.801507

The minimum absolute error is 0.065254 pixel, which justifies that the characterized parameter values s = 0.25, $\mu =$ 0.075, a = 0, $\beta = 0$, and ? = 0.625 governing the formulation of the DCT based GVF Active Contours have been standardized, taking into account the earlier discussion regarding the one pixel width of the contour and one pixel step size. The minimum absolute error is a very low figure that defends that the characterized parameter values have been validated or standardized, and can be applied for boundary mapping similar classes of chromosome images.

However, the maximum absolute error is **1.900074** pixel, which is a little high. This can be explained as follows. In the standardization studies, concentration has not been applied on preprocessing applied to the chromosome image samples. Though a little preprocessing has been applied, still there has been residual background with a gray level very near to the intensity of the weak edge of the chromosome image sample, which can be easily visualized by the naked eye. This effect has contributed to an error in the convergence of the Active Contour which had mistaken the residual background as a weak edge, giving rise to more error. Since concentration on preprocessing techniques does not fall within the perspectives of this research work, only limited concentration has been applied and limited preprocessing has been done, which has given rise to this residual background effect near weak edges of chromosomes. Hence, it is suggested that preprocessing techniques may be suitably applied so that a little difference in grav level is introduced in background pixels near to weak edges of chromosomes, so that a distinction can be made in the gray level intensity between the background near the weak edges and the actual weak edges. This will bring down the maximum absolute error, and accurate boundary mapping can be obtained on all samples.

To assess the validity of the standardization experiments, error quantification has also been performed on the second dataset that has been used for evaluation of standardization. The error tabulation is shown in Table9.

Table 9. Error in boundary mapping for sample images used for evaluation of standardization										
Sample	Original	Contour	Major	Major	Original	Contour	Minor	Minor		
No.	Image	Image	Axis	Axis	Image	Image	Axis	Axis		
	Major	Major	Error	Absolute	Minor	Minor	Error	Absolute		
	Axis	Axis	(Original	Error	Axis	Axis	(Original	Error		
	Radius	Radius	-	(Original	Radius	Radius	-	(Original		
	(pixels)	(pixels)	Contour)	-	(pixels)	(pixels)	Contour)	-		
			(pixels)	Contour)			(pixels)	Contour)		
				(pixels)				(pixels)		
1	27.500278	29.252726	-1.752448	1.752448	13.225247	14.868594	-1.643347	1.643347		
2	20.286862	21.439387	-1.152526	1.152526	13.044407	14.721727	-1.677320	1.677320		
3	35.607997	37.318572	-1.710575	1.710575	13.381174	14.929574	-1.548400	1.548400		
4	28.015593	29.788997	-1.773404	1.773404	13.907166	15.283898	-1.376732	1.376732		
5	36.030472	37.719995	-1.689524	1.689524	10.313090	11.703343	-1.390253	1.390253		
6	41.974266	43.250607	-1.276341	1.276341	11.818455	13.465882	-1.647427	1.647427		
7	29.987934	31.354815	-1.366881	1.366881	10.379819	12.090108	-1.710289	1.710289		
8	19.014212	20.279896	-1.265684	1.265684	8.960137	10.417969	-1.457832	1.457832		

Table 9 Error in	Boundary	Manning for	r samnle images	used for evaluat	ion of standardization
Table 7. Error m	Doundary	mapping iv	i sampie mages	uscu for crafuat	ion of standar dization

9	19.572380	21.253164	-1.680785	1.680785	10.368538	12.010517	-1.641979	1.641979
10	25.617336	27.225766	-1.608430	1.608430	14.244978	15.681151	-1.436173	1.436173
11	45.588463	46.599441	-1.010978	1.010978	12.200897	13.441862	-1.240965	1.240965
12	55.551831	56.730921	-1.179091	1.179091	12.096065	13.692535	-1.596470	1.596470
13	40.753298	41.902321	-1.149023	1.149023	12.244258	13.835217	-1.590960	1.590960
14	13.361401	15.098514	-1.737113	1.737113	12.139470	13.305029	-1.165559	1.165559
15	23.571876	24.927963	-1.356088	1.356088	10.399246	11.994666	-1.595420	1.595420
16	25.152889	26.959978	-1.807089	1.807089	14.673799	16.044380	-1.370582	1.370582
17	20.687946	22.150714	-1.462768	1.462768	13.681125	14.744788	-1.063663	1.063663
18	29.648501	30.682733	-1.034233	1.034233	16.339489	18.025519	-1.686030	1.686030
19	16.968261	18.401797	-1.433536	1.433536	12.399827	13.509598	-1.109771	1.109771
20	20.266691	21.948991	-1.682300	1.682300	12.440257	13.813558	-1.373301	1.373301
21	64.873797	65.902900	-1.029103	1.029103	13.721891	15.336432	-1.614541	1.614541
22	38.053659	39.289775	-1.236116	1.236116	13.300053	14.903674	-1.603621	1.603621
23	19.123143	20.186235	-1.063092	1.063092	9.400262	10.817705	-1.417443	1.417443
24	20.509131	21.892596	-1.383465	1.383465	14.591319	15.921873	-1.330554	1.330554
25	20.630242	22.593723	-1.963482	1.963482	13.357301	14.631125	-1.273824	1.273824
26	29.035200	30.363074	-1.327874	1.327874	10.781194	11.779053	-0.997859	0.997859
27	18.376779	19.535188	-1.158409	1.158409	11.275638	12.405822	-1.130184	1.130184
28	45.526893	46.683210	-1.156317	1.156317	10.990250	11.782551	-0.792302	0.792302
29	21.535536	22.157116	-0.621580	0.621580	9.449374	10.435725	-0.986350	0.986350
30	38.446929	38.351078	0.095851	0.095851	10.715210	11.803282	-1.088073	1.088073
31	35.836197	37.160304	-1.324107	1.324107	9.932954	11.041850	-1.108896	1.108896
32	30.869946	32.290574	-1.420628	1.420628	13.395228	14.085450	-0.690222	0.690222
33	21.417927	22.440844	-1.022918	1.022918	11.716527	13.232385	-1.515858	1.515858
34	62.497822	63.033789	-0.535967	0.535967	24.737276	25.821964	-1.084688	1.084688
35	18.154560	19.089820	-0.935260	0.935260	8.568300	9.926931	-1.358631	1.358631
36	26.217408	27.347200	-1.129792	1.129792	12.323615	13.652485	-1.328870	1.328870
37	35.806111	37.127095	-1.320984	1.320984	13.486754	14.883007	-1.396253	1.396253
38	31.916313	33.508124	-1.591811	1.591811	10.774331	12.401953	-1.627622	1.627622
39	32.668061	33.756079	-1.088018	1.088018	14.375519	16.046795	-1.671276	1.671276
40	22.413255	23.771220	-1.357965	1.357965	10.675502	12.436387	-1.760885	1.760885
41	19.480214	21.057702	-1.577488	1.577488	15.770160	16.646762	-0.876602	0.876602
42	38.955888	40.432240	-1.476353	1.476353	14.047309	15.710100	-1.662791	1.662791
43	63.876941	65.519154	-1.642213	1.642213	15.764328	17.368844	-1.604517	1.604517
44	24.307974	26.033315	-1.725341	1.725341	11.351497	12.995835	-1.644339	1.644339
45	19.800430	21.106789	-1.306360	1.306360	10.068588	11.336479	-1.267891	1.267891
46	31.409754	32.854170	-1.444416	1.444416	12.546744	13.895688	-1.348944	1.348944
47	29.162427	30.887020	-1.724593	1.724593	11.306874	12.757023	-1.450149	1.450149
48	48.068995	49.399138	-1.330143	1.330143	12.178446	13.463193	-1.284747	1.284747
49	22.282490	23.503758	-1.221269	1.221269	13.715583	15.211781	-1.496198	1.496198
50	23.494014	24.937220	-1.443207	1.443207	10.257538	11.756778	-1.499240	1.499240
Maximum								
Absolute				1.963482				1.760885
Error								
Minimum Abaolt-				0.005051				0.000
Absolute				0.095851				0.690222
FILOL								

It is found that the error varies between **0.095851** and **1.963482**, which is similar to the error measures obtained from the standardization experiments (discussed in previous paragraphs). Therefore, the same inferences that have been discussed earlier are valid. The very low of the minimum absolute error indicates the success of the boundary mapping scheme and the high value of the maximum absolute error justifies exploration of suitable preprocessing techniques

VII. CONCLUSION

The Discrete Cosine Transform based Gradient Vector Flow Active Contours can be used for successful efficient boundary mapping of chromosome spread images. The values s = 0.25, $\mu = 0.075$, a = 0, $\beta = 0$, and ? = 0.625 have hence been standardized and evaluated. Therefore, they can be used in DCT based GVF Active Contours for efficient boundary mapping of similar classes of chromosome spread images.

VIII. ACKNOWLEDGEMENT

The authors express their thanks to **Dr.Michael Difilippantonio**, *Staff Scientist at the Section of Cancer Genomics*, *Genetics Branch/CCR/NCI/NIH*, *Bethesda MD*; **Prof.Ekaterina Detcheva** at the *Artificial Intelligence Department*, *Institute of Mathematics and Informatics*, *Sofia*, *Bulgaria*; **Prof.Ken Castleman** and **Prof.Qiang Wu**, from *Advanced Digital Imaging Research*, *Texas* for their help in providing chromosome spread images.

IX. REFERENCES

- [1] McInerney T. and D. Terzopoulos, Deformable models in medical image analysis, IEEE Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis. (1996) pp: 171-180
- [2] Prabhu Britto A. and G.Ravindran, Boundary Mapping of Chromosome Images using Gradient Vector Flow Active Contours and Investigations, Academic Open Internet Journal (accepted) (2005)
- [3] Prabhu Britto A. and G. Ravindran, Boundary mapping of chromosome spread images using optimal set of parameter values in Discrete Cosine Transform based Gradient Vector Flow Active Contours, J. Applied Sci. (Ansinet) (accepted) (2005)
- [4] Kass M., A. Witkin, D. Terzopoulos, Snakes: active contour models, Int. J. Comp. Vision 1 (1987). pp: 321–331
- [5] Rueckert D., Segmentation and tracking in cardiovascular MR images using geometrically deformable models and templates, PhD thesis, Imperial College of Science, Technology and Medicine, London (1997)
- [6] C. Xu and J.L. Prince, "Gradient Vector Flow: A New External Force for Snakes", IEEE Proc. Conf. on Comp. Vis. Patt. Recog. (CVPR'97) 66-71
- [7] Leroy B., I.Herlin and L.D.Cohen, Multi-resolution algorithms for active contour models, In 12th Intl. Conf. on Analysis and Optimization of Systems. (1996) pp: 58-65
- [8] Cohen L.D., On active contours and balloons, CVGIP: Image Understanding, 53(2). (1991) pp:211-218.
- Cohen L.D. and I.Cohen, Finite-element methods for active contour models and balloons for 2-D and 3-D images, IEEE Trans. On Pattern Anal. Machine Intell., 15(11). (1993) pp:1131-1147
- [10] Davatzikos C. and J.L.Prince, An active contour model for mapping the cortex, IEEE Trans. on Medical Imaging, 14(1). (1995) pp :65-80
- [11] Davatzikos C. and J.L.Prince (1994) Convexity analysis of active contour models, In Proc. Conf. on Info. Sci. and Sys pp.:581-587
- [12] Abrantes A.J. and J.S.Marques, A class of constrained clustering algorithms for object boundary extraction, IEEE Trans. on Image Processing, 5(11). (1996) pp:1507-1521
- [13] Prince J.L. and C.Xu, A new external force model for snakes, In 1996 Image and Multidimensional Signal Processing Workshop. (1996) pp:30-31
- Xu C. and J.L.Prince, Gradient Vector Flow Deformable Models, In Handbook of Medical Imaging, Academic Press. (2000) pp: 159-170
- [15] Xu C. and J.L. Prince, Snakes, shapes and gradient vector flow, IEEE Trans. on Image Processing, 7(3). (1998) pp:359-369
- [16] Tang, Jinshan and S.T. Acton, A DCT based gradient vector flow snake for object boundary detection, Image Analysis and Interpretation, 2004. 6th IEEE Southwest Symposium on. (2004) pp: 157 – 161

Technical College - Bourgas, All rights reserved, © March, 2000